Examples¶
Some examples are already available into documentation. You can find here some others and results of use of rawls package.
Processing example¶
Read and save .rawls file:
from rawls.rawls import Rawls
path = 'images/example_1.rawls'
rawls_img = Rawls.load(path)
rawls_img.to_png('output.png')
![_images/output.png](_images/output.png)
Display rendering information:
from rawls.rawls import Rawls
path = 'images/example_1.rawls'
rawls_img = Rawls.load(path)
print(rawls_img)
--------------------------------------------------------
Shape:
(100, 100, 3)
Details:
Samples: 1000
Filter: default
Resolution: `image`
- [integer] xresolution: 100
- [integer] yresolution: 100
- [string] filename: p3d_bathroom.rawls
Sampler: `random`
- [integer] pixelsamples: 64
Accelerator: default
Integrator: `path`
- [integer] maxdepth: 65
Camera: `perspective`
- [float] fov: 55
- [float] focaldistance: 31
- [float] lensradius: 0.15000001
LookAt:
- eye: (0.0, 18.0, 30.0)
- point: (10.2, 5.0, 0.0)
- up: (0.0, 1.0, 0.0)
Gamma converted:
False
--------------------------------------------------------
Statistics extraction¶
Extract statistics from multiples .rawls samples files:
from rawls.rawls import Rawls
from rawls.stats import RawlsStats
path_list = ['images/example_1.rawls', 'images/example_2.rawls']
rawls_stats = RawlsStats.load(path_list)
print(rawls_stats)
--------------------------------------------------------
nelements:
2
Details:
Samples: 2000
Filter: default
Resolution: `image`
- [integer] xresolution: 100
- [integer] yresolution: 100
- [string] filename: p3d_bathroom.rawls
Sampler: `random`
- [integer] pixelsamples: 64
Accelerator: default
Integrator: `path`
- [integer] maxdepth: 65
Camera: `perspective`
- [float] fov: 55
- [float] focaldistance: 31
- [float] lensradius: 0.15000001
LookAt:
- eye: (0.0, 18.0, 30.0)
- point: (10.2, 5.0, 0.0)
- up: (0.0, 1.0, 0.0)
Mean samples per element:
1000.0
Expected shape:
(100, 100, 3)
--------------------------------------------------------
rawls_mean = rawls_stats.mean()
rawls_mean.save('output_mean.png')
![_images/output_mean.png](_images/output_mean.png)
Store additionals data¶
Add additionals comments into .rawls file before saving:
rawls_img = Rawls.load('images/example_1.rawls')
rawls_img.add_comment('SceneVersion', 'v1.0.1')
print(rawls_img)
--------------------------------------------------------
Shape:
(100, 100, 3)
Details:
Samples: 1000
Filter: default
Film: `image`
- [integer] xresolution: 100
- [integer] yresolution: 100
- [string] filename: p3d_bathroom.rawls
Sampler: `random`
- [integer] pixelsamples: 64
Accelerator: default
Integrator: `path`
- [integer] maxdepth: 65
Camera: `perspective`
- [float] fov: 55
- [float] focaldistance: 31
- [float] lensradius: 0.15000001
LookAt:
- eye: (0.0, 18.0, 30.0)
- point: (10.2, 5.0, 0.0)
- up: (0.0, 1.0, 0.0)
Additionnals:
SceneVersion: v1.0.1
Gamma converted:
False
--------------------------------------------------------
rawls_img.save('images/example_additionals.rawls')